SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Electromagnetic Theory and Transmission Line (18EC0412)
Course \& Branch: B.Tech - ECE Year \&Sem: III-B.Tech\& I-Sem
Regulation: R18

UNIT -I
 ELECTROSTATIC FIELDS

1	a	Define Coulomb's law.	[L1][CO1]	[2M]
	b	Define Electric field intensity.	[L1][CO1\&2]	[2M]
	c	Define Gauss's law.	[L1][CO1]	[2M]
	d	List various charge distributions.	[L1][CO1]	[2M]
	e	List Maxwell's equations for electrostatic fields.	[L1][CO1\&2]	[2M]
2	a	Define Coulomb's law and derive the force F that exists between two unlike charges.	[L1][CO1\&2]	[5M]
	b	Three Point Charges $\mathrm{Q}_{1}=1 \mathrm{mc}, \mathrm{Q}_{2}=2 \mathrm{mc}$ and $\mathrm{Q}_{3}=-3 \mathrm{mc}$ are respectively located at $(0,0,4),(-2,6,1)$ and $(3,-4,-8)$. Calculate the electric force and electric field on Q_{1} due to Q_{2} and Q_{3}.	[L3][CO1\&2]	[5M]
3	a	Find the electric field at a point P located with a distance of r from an infinite sheet with uniform surface charge density of $\rho_{s} C / \mathrm{m}^{2}$.	[L1][CO1\&2]	[6M]
	b	A Point Charge of $20 \eta \mathrm{c}$ is Located at the Origin. Determine the Magnitude and Direction of the electric field intensity at the Point (1,3, -4).	[L3][CO1\&2]	[4M]
4	a	Define Gauss's Law. Apply Gauss's law to evaluate Electric Flux density for a uniformly charged Sphere.	[L1][CO1,2\&3]	[7M]
	b	What are the advantages and applications of Gauss law?	[L1][CO1\&2]	[3M]
5	a	Apply Gauss Law to evaluate the electric flux density at a point P due to the point charge located at the origin.	[L3][CO1,2\&3]	[5M]
	b	A Point Charge 100 pC is located at $(4,1,-3)$ while the x -axis carries charge $2 \eta \mathrm{C} / \mathrm{m}$. If the Plane $\mathrm{z}=3$ is also carries charge $5 \eta \mathrm{C} / \mathrm{m}^{2}$, find E at $(1,1,1)$.	[L3][CO1\&2]	[5M]
6	a	Evaluate the two Maxwell's equations for electrostatic fields and state them.	[L5][CO1,2\&3]	[8M]
	b	List Maxwell equations for electrostatic fields in integral form.	[L1][CO1,2\&3]	[2M]
7	a	Classify Maxwell equations for electrostatic fields in both differential and integral form.	[L4][CO1,2\&3]	[5M]
	b	Two point charges, $\mathrm{Q}_{\mathrm{A}}=+8 \mu \mathrm{C}$ and $\mathrm{Q}_{\mathrm{B}}=-5 \mu \mathrm{C}$, are separated by a distance r $=10 \mathrm{~cm}$. What is the magnitude of the electric force between them?	[L3][CO1\&2]	[5M]
8	a	Define the Electric Flux Density. Determine the Electric flux density at a point P due to infinite line of uniform Charge density $\rho_{\mathrm{L}} \mathrm{C} / \mathrm{m}$.	[L1][CO1\&2]	[7M]
	b	Point Charges $\mathrm{Q}_{1}=4 \mu \mathrm{c}, \mathrm{Q}_{2}=-5 \mu \mathrm{c}$ and $\mathrm{Q}_{3}=2 \mu \mathrm{c}$ are located at $(0,0,1) .(-6,8,0)$ and $(0,4,-3)$ respectively find D at the origin.	[L3][CO1\&2]	[3M]
9	a	Define Eclectic Potential. Find the electric potential for a point charge is located at origin.	[L1][CO1\&2]	[7M]
	b	Determine the Relationship between E and V .	[L5][CO1\&2]	[3M]
10	Explain the following with expression.		[L2][CO1,2\&3]	[10M]
11	a	Deduce the electric field at a distance r due to an infinitely long straight line of charge with a uniform charge density of $\boldsymbol{\rho}_{\mathrm{L}} \mathrm{C} / \mathrm{m}$.	[L4] [CO1\&2]	[7M]
	b	A charge of $5 \times 10^{-8} \mathrm{C}$ is distributed uniformly on the surface of a sphere of radius 1 cm . It is sphere of radius 6 cm . Calculate the electric flux.	[L3] [CO1\&2]	[3M]

UNIT -II
 MAGNETOSTATIC FIELDS

1	a	Define Biot-Savart's law.	[L1][CO1\&2]	[2M]
	b	Define Magnetic flux density.	[L1][CO1\&2]	[2M]
	c	Define Ampere's Circuit law.	[L1][CO1,2\&3]	[2M]
	d	Define Magnetic Flux.	[L1][CO2]	[2M]
	e	What is meant by Magnetostatic fields?	[L1][CO2]	[2M]
2	a	Explain Biot-Savart's Law.	[L2][CO1\&2]	[5M]
	b	A Positive Y-axis (Semi Infinite Line with respect to the Origin) Carries a Filamentary Current of 2 A in the -ay Direction. Assume it is part of a large circuit. Find H at (i) A $(2,3,0)$. (ii) B $(3,12,-4)$.	[L3][CO1\&2]	[5M]
3	a	Explain Ampere's Circuit Law.	[L2][CO1,2\&3]	[5M]
	b	Determine the Magnetic Field Intensity due to a infinite sheet current.	[L5][CO1\&2]	[5M]
4	a	Determine Maxwell's Equations for Magnetostatic Field.	[L5][CO1,2\&3]	[5M]
	b	Determine the Magnetic Flux Density due to Infinite Sheet of Current.	[L5][CO1\&2]	[5M]
5	a	Discuss about Magnetic Vector and Scalar Potentials.	[L6][CO1\&2]	[5M]
	b	Given Magnetic Vector Potential $A=-\rho / 4 a_{z} \mathrm{wb} / \mathrm{m}$, Calculate the total magnetic flux crossing the $\Phi=\pi / 2,1 \leq \rho \leq 2 \mathrm{~m}, 0 \leq \mathrm{z} \leq 5 \mathrm{~m}$.	[L3][CO1\&2]	[5M]
6	a	Explain about magnetic scalar and vector potential for Magneto-statics.	[L2][CO1\&2]	[5M]
	b	An infinitely filamentary wire carries a current of 2 A in the +z direction. Calculate B at $(-3,4,7)$.	[L3][CO1\&2]	[5M]
7	a	Determine the Magnetic Field Density due to Infinite line Current by applying Ampere's Circuit law.	[L5][CO1\&2]	[6M]
	b	List differential and integral form of Maxwell's equation for static EM filed.	[L1][CO2\&3]	[4M]
8	a	Find the Magnetic field Intensity Due to a Straight current carrying filamentary conductor of finite length.	[L1][CO1\&2]	[5M]
	b	Find H at $(-3,4,0)$ due to the Current Filament Shown in the Figure.	[L1][CO1,2\&3]	[5M]
9		Find \mathbf{H} for a straight current carrying conductor using Biot Savart's law and Ampere's Circuit law.	[L1][CO1\&2]	[10M]
10	Explain any two applications of Ampere's Circuit law.		[L2][CO1,2\&3]	[10M]
11	a	A Current Distribution gives rise to the vector potential $A=X^{2} \mathrm{Ya}_{x}+\mathrm{Y}^{2} \mathrm{Xa}_{y}+\mathrm{XYZa}_{z}$ $\mathrm{web} / \mathrm{m}$. Calculate B.	[L3] [CO1\&2]	[5M]
	b	Explain about Non-Existence of Magnetic Mono pole.	[L2] [CO2]	[5M]

UNIT -III
 MAXWELL'S EQUATIONS (TIME VARYING FIELDS)

1	a	Define Faraday's		[L1][CO2\&3]	[2M]
	b	Define In consis	y of Ampere's law.	[L1][CO2\&3]	[2M]
	c	Define Motional E		[L1][CO2\&3]	[2M]
	d	Define Transformer	EMF.	[L1][CO2\&3]	[2M]
	e	Define Displace	current.	[L1][CO2\&3]	[2M]
2	a	Explain Faraday	ws in Electromagnetic induction.	[L2][CO1\&2]	[6M]
	b	Prove that the D	ement Current Density $J_{D}=\frac{\partial D}{\partial t}$	[L5][CO1,2\&3]	[4M]
3	a	Determine the Tr	former EMF for the time varying fields.	[L5][CO1,2\&3]	[7M]
	b	Define Faraday's		[L1][CO1,2\&3]	[3M]
4	a	Explain Faraday' Expression for Ind	law of electromagnetic induction and derive the ced EMF.	[L2][CO1,2\&3]	[5M]
	b	Explain the moti equation.	al EMF and derive the expression for the maxwell	[L2][CO1,2\&3]	[5M]
5	a	Determine the Exp	essions for inconsistency of Ampere's law.	[L5][CO1,2\&3]	[8M]
	b	Why ampere's Law	is In-consistent.	[L1][CO2\&3]	[2M]
6	a	Discuss Maxwel	equation in both differential and integral in final form	[L6][CO1,2\&3]	[6M]
	b	An antenna radiat ω and β.	in free space and $\mathrm{H}=50 \cos (1000 \mathrm{t}-5 \mathrm{y}) \mathrm{A} / \mathrm{m}$. Calculate	[L3][CO2\&3]	[4M]
7	a	In free space, $\mathrm{E}=2$	$\cos (\oplus \mathrm{m}-50 \mathrm{x})$ ay V/m. Calculate Jd, H.	[L3][CO2\&3]	[6M]
	b	Translate the Max	ell's equations into word statement.	[L2][CO1,2\&3]	[4M]
8	a	Prove that one of t	Maxwell's equation is $\nabla \times \mathrm{E}=-\mathrm{dB} / \mathrm{dt}$	[L5][CO1,2\&3]	[6M]
	b	In free space, $\mathrm{H}=10$	$\sin (\omega \mathrm{t}-100 \mathrm{x})$ ay A/m. Calculate Jd, E.	[L3][CO2\&3]	[4M]
9	a	Prove that one of the	Maxwell's equation is $\nabla \times \mathrm{H}=\mathrm{J}_{\mathrm{d}}+\mathrm{J}$.	[L5][CO1,2\&3]	[7M]
	b	An antenna radiat ω and β.	in free space and $\mathrm{E}=80 \cos (500 \mathrm{t}-8 \mathrm{z})$ ax V/m. Calculate	[L3][CO2\&3]	[3M]
10	Explain and determine the EMF for the Followings. i) Motional EMF. (ii)Transformer EMF.			[L2][CO2\&3]	[10M]
11	Explain the following i) Faraday's law ii) Inconsistency of Ampere's law			[L2] [CO2\&3]	[10M]

UNIT -IV
 EM WAVE PROPAGATION

1	a	Define Poynting theorem.	[L1][CO3\&4]	[2M]
	b	Define Polarization.	[L1][CO3\&4]	[2M]
	c	Define Poynting vector.	[L1][CO3\&4]	[2M]
	d	Define Propagation constant.	[L1][CO3\&4]	[2M]
	e	List wave equation for E and H in free space?	[L1][CO3\&4]	[2M]
2		Discuss about pointing theorem and Poynting vector.	[L6][CO4\&5]	[10M]
3	a	Explain and derive the characteristics of wave propagation in free space.	[L2][CO3,4\&5]	[6M]
	b	Given that $\mathrm{E}=40 \cos \left(10^{8} t-3 x\right) a_{y} v / m$, Determine the direction of wave propagation, velocity of the wave, wave length.	[L3][CO4\&5]	[4M]
4		Electric field in free space is given by $\mathrm{E}=50 \cos \left(10^{8} t+\beta x\right) a_{y} v / m$ a). Find the direction of wave propagation. b). Calculate β and the time it takes to travel a distance of λ. c). Sketch the wave at $t=0, T / 4$ and $T / 2$.	[L3][CO4\&5]	[10M]
5	a	Determine the expression for intrinsic impendence and propagation constant in a good conductor.	[L5][CO4\&5]	[6M]
	b	In a Nonmagnetic medium $\mathrm{E}=4 \sin \left(2 \pi X 10^{7} t-0.8 x\right) a_{z} v / m$, find ε_{r}, η.	[L3][CO4\&5]	[4M]
6	a	Evaluate the wave characteristics of a uniform plane wave in free space.	[L5][CO4\&5]	[6M]
	b	In free space $(\mathrm{z} \leq 0)$, a plane wave with $\mathrm{H}=10 \cos \left(10^{8} \mathrm{t}-\beta \mathrm{z}\right) \hat{a}_{x} \mathrm{~mA} / \mathrm{m}$ is incident normally on a lossless medium ($\varepsilon=2 \varepsilon_{0}, \mu=8 \mu_{0}$) in region z >0. Determine the reflected wave and the transmitted wave.	[L3] [CO4\&5]	[4M]
7	a	Evaluate the wave equation in lossy dielectric medium for sinusoidal time variations.	[L5][CO3,4\&5]	[5M]
	b	In lossless medium $\eta=40 \pi, \mu_{r}=1, \mathrm{H}=2 \cos (\omega \mathrm{t}-\mathrm{z}) \widehat{\boldsymbol{a}}_{x}+5 \sin (\omega \mathrm{t}-\mathrm{z})$ \widehat{a}_{y}. Find ε_{r}, ω, E for the medium.	[L3][CO4\&5]	[5M]
8	a	Evaluate the expressions for attenuation constant and phase shift constant of lossy dielectric medium.	[L5][CO4\&5]	[5M]
	b	A plane wave propagating through medium with $\varepsilon_{r}=8, \mu_{r}=2$ has the electric field intensity $\mathrm{E}=0.5 e^{-j z 3} \sin \left(10^{8} \mathrm{t}-\beta \mathrm{z}\right) \hat{a}_{x} \mathrm{~V} / \mathrm{m}$. Determine wave velocity, wave impedance and magnetic field intensity.	[L3][CO4\&5]	[5M]
9		Evaluate the expressions for reflection coefficient and transmission coefficient by a normal incident wave for a dielectric medium.	[L5][CO4\&5]	[10M]
10	Explain the followings with an expression. i) Linear polarization ii) Circular polarization iii) Elliptical polarization		[L2][CO4\&5]	[10M]
11		a medium, $\mathrm{E}=14 e^{-0.05 x} \sin \left(2 \times 10^{8} \mathrm{t}-2 \mathrm{x}\right) \hat{a}_{z} \mathrm{~V} / \mathrm{m}$ Determine the followings: i) The propagation constant ii) The wavelength iii) The speed of the wave iv) Sketch the wave at $t=0, T / 4 \& T / 2$	[L3] [CO4\&5]	[10M]

UNIT -V
 TRANSMISSION LINES

1	a	What are the secondary constants of a line?	[L1][CO6]	[2M]
	b	What is characteristic impedance?	[L1][CO6]	[2M]
	c	Define transmission line.	[L1][CO6]	[2M]
	d	What is the relationship between characteristic impedance and propagation constant?	[L1][CO6]	[2M]
	e	What are the primary constants of a transmissionline?	[L1][CO6]	[2M]
2	a	Evaluate the equation for voltage and current at any point in a transmission line.	[L5][CO6]	[6M]
	b	Discuss about Transmission line Parameters.	[L6][CO6]	[4M]
3	a	Evaluate the equation for Characteristic Impedance of a Transmission line.	[L5][CO6]	[5M]
	b	A telephone line has the following parameters: $\mathrm{R}=30 \Omega / \mathrm{km}, \mathrm{G}=0 \mathrm{~L}=$ $100 \mathrm{mH} / \mathrm{km}, \mathrm{C}=20 \mu \mathrm{~F} / \mathrm{m}$. At 1 kHz , calculate the characteristic impedance, propagation constant and velocity of the signal.	[L3][CO6]	[5M]
4	a	Explain about Microstrip Transmission Line.	[L2][CO6]	[5M]
	b	A distortion less line has $Z_{0}=60 \Omega$ Attenuation constant $=20 \mathrm{mNp} / \mathrm{m}$ and $\mathrm{u}=0.6 \mathrm{c}$ (c is velocity of light) Find the primary parameters of the transmission line(R L C G and λ) at 100 MHz .	[L3][CO6]	[5M]
5	a	Evaluate the equation for Input Impedance of the transmission line.	[L5][CO6]	[5M]
	b	A Certain transmission line 2 m long operating at $\omega=10^{6} \mathrm{rad} / \mathrm{s}$ has $\alpha=8 \mathrm{bd} / \mathrm{m}$, $\beta=1 \mathrm{rad} / \mathrm{m}$, and $\mathrm{Z}_{0}=60+\mathrm{j} 40 \Omega$. If the line is connected to a source of 10 angle $\left(0^{0}\right) \mathrm{V}, \mathrm{Z}_{\mathrm{g}}=40 \Omega$ and terminated by a load of $20+\mathrm{j} 50 \Omega$, determine the input impedance.	[L3][CO6]	[5M]
6	a	Relate SWR and reflection coefficient.	[L2][CO6]	[5M]
	b	Explain the applications of transmission lines.	[L2] [CO6]	[5M]
7	a	Discuss about Transients on Transmission Lines.	[L6][CO6]	[5M]
	b	A low loss transmission line of 100Ω characteristics impedance is connected to a load of 200Ω. Calculate the voltage reflection coefficient and the standing wave ratio.	[L3][CO6]	[5M]
8		A 50Ω lossless transmission line is terminated on a load impedance of ZL $=(25+\mathrm{j} 50) \Omega$. Use the smith chart to find. i) Voltage reflection coefficient. ii) VSWR. iii) input impedance of the line, given that the line is 3.3λ long.	[L3][CO6]	[10M]
9	a	Explain about the smith chart for finding the SWR and Reflection coefficient.	[L2][CO6]	[7M]
	b	List out the applications of smith chart?	[L1][CO6]	[3M]
10		30 m long lossless transmission line with $\mathrm{Z}_{0}=50 \Omega$ operating at 2 MHz is rminated with a load $Z_{L}=60+j 40 \Omega$. If $u=0.6 \mathrm{C}$ on the line, find the flection coefficient, the standing wave ratio S and the input impedance.	[L3][CO6]	[10M]
11		lossless transmission line with $\mathrm{Z}_{0}=50 \Omega$ is 30 m long and operates at 3 MHz . The line is terminated with a load $\mathrm{ZL}=70+\mathrm{j} 50 \Omega$, If $\mathrm{u}=0.6 \mathrm{c}$ on the line. Compute reflection coefficient, standing wave ratio and Input impedance, load impedance, SWR and complex reflection coefficient (i) without using smith chart (ii) Using smith chart	[L3][CO6]	[10M]

Prepared by:

1. Dr. BASAVARAJ GK

Professor/ECE
2. Mr. K.BHASKAR

Assistant Professor/ECE

