QP Code: 18EC0412

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Electromagnetic Theory and Transmission Line (18EC0412)

Course & Branch: B.Tech – ECE Year &Sem: III-B.Tech& I-Sem Regulation: R18

UNIT –I ELECTROSTATIC FIELDS

		ELECTROSTATIC FIELDS		
1	a	Define Coulomb's law.	[L1][CO1]	[2M]
	b	Define Electric field intensity.	[L1][CO1&2]	[2M]
	c	Define Gauss's law.	[L1][CO1]	[2M]
	d	List various charge distributions.	[L1][CO1]	[2M]
	e	List Maxwell's equations for electrostatic fields.	[L1][CO1&2]	[2M]
2	a	Define Coulomb's law and derive the force F that exists between two unlike	[L1][CO1&2]	[5M]
	b	charges. Three Point Charges $Q_1=1$ mc, $Q_2=2$ mc and $Q_3=-3$ mc are respectively	[L3][CO1&2]	[5M]
	D	located at $(0,0,4)$, $(-2,6,1)$ and $(3, -4, -8)$. Calculate the electric force and		[5M]
		electric field on Q_1 due to Q_2 and Q_3 .		
3	a	Find the electric field at a point P located with a distance of r from an infinite	[L1][CO1&2]	[6M]
	1.	sheet with uniform surface charge density of $\rho_s C/m^2$.	H 211001021	F 4 N # 3
	b	A Point Charge of 20ηc is Located at the Origin. Determine the Magnitude and Direction of the electric field intensity at the Point (1,3, -4).	[L3][CO1&2]	[4M]
4	a	Define Gauss's Law. Apply Gauss's law to evaluate Electric Flux density for	[L1][CO1,2&3]	[7M]
		a uniformly charged Sphere.	L 1L / 1	
	b	What are the advantages and applications of Gauss law?	[L1][CO1&2]	[3M]
5	a	Apply Gauss Law to evaluate the electric flux density at a point P due to the point charge located at the origin.	[L3][CO1,2&3]	[5M]
	b	A Point Charge 100 pC is located at (4,1, -3) while the x-axis carries charge	[L3][CO1&2]	[5M]
		2η C/m. If the Plane z=3 is also carries charge 5η C/m ² , find E at (1,1,1).		
6	a	Evaluate the two Maxwell's equations for electrostatic fields and state them.	[L5][CO1,2&3]	[8M]
	b	List Maxwell equations for electrostatic fields in integral form.	[L1][CO1,2&3]	[2M]
7	a	Classify Maxwell equations for electrostatic fields in both differential and	[L4][CO1,2&3]	[5M]
	h	integral form. Two point charges, $Q_A = +8 \mu C$ and $Q_B = -5 \mu C$, are separated by a distance r	[L3][CO1&2]	[EN/I]
	b	= 10 cm. What is the magnitude of the electric force between them?		[5M]
8	a	Define the Electric Flux Density. Determine the Electric flux density at a	[L1][CO1&2]	[7M]
		point P due to infinite line of uniform Charge density ρ _L C/m.		
	b	Point Charges Q_1 =4 μ c, Q_2 =-5 μ c and Q_3 =2 μ c are located at $(0,0,1)$. $(-6,8,0)$	[L3][CO1&2]	[3M]
	_	and (0,4,-3) respectively find D at the origin.	H 11100101	[#] N /[]
9	a	Define Eclectic Potential. Find the electric potential for a point charge is located at origin.	[L1][CO1&2]	[7M]
	b	Determine the Relationship between E and V.	[L5][CO1&2]	[3M]
10		plain the following with expression.	[L2][CO1,2&3]	[10M]
		Coloumb's law. b) Electric field intensity. c) Gauss law.		
11	a	Deduce the electric field at a distance r due to an infinitely long straight line	[L4] [CO1&2]	[7M]
	ļ.,	of charge with a uniform charge density of $\rho_L C/m$.	FI A1 FGC 1 0 A7	503.53
	b	A charge of 5×10^{-8} C is distributed uniformly on the surface of a sphere of	[L3] [CO1&2]	[3M]
		radius 1 cm. It is sphere of radius 6 cm. Calculate the electric flux.		

QP Code: 18EC0412 **R18**

UNIT –II MAGNETOSTATIC FIELDS

1	a	Define Biot-Savart's law.	[L1][CO1&2]	[2M]
	b	Define Magnetic flux density.	[L1][CO1&2]	[2M]
	С	Define Ampere's Circuit law.	[L1][CO1,2&3]	[2M]
	d	Define Magnetic Flux.	[L1][CO2]	[2M]
	e	What is meant by Magnetostatic fields?	[L1][CO2]	[2M]
2	a	Explain Biot-Savart's Law.	[L2][CO1&2]	[5M]
	b	A Positive Y-axis (Semi Infinite Line with respect to the Origin) Carries a	[L3][CO1&2]	[5M]
		Filamentary Current of 2 A in the -ay Direction. Assume it is part of a large	2 32 3	
		circuit. Find H at (i) A (2,3,0). (ii)B (3,12, -4).		
3	a	Explain Ampere's Circuit Law.	[L2][CO1,2&3]	[5M]
	b	Determine the Magnetic Field Intensity due to a infinite sheet current.	[L5][CO1&2]	[5M]
4	a	Determine Maxwell's Equations for Magnetostatic Field.	[L5][CO1,2&3]	[5M]
	b	Determine the Magnetic Flux Density due to Infinite Sheet of Current.	[L5][CO1&2]	[5M]
5	a	Discuss about Magnetic Vector and Scalar Potentials.	[L6][CO1&2]	[5M]
	b	Given Magnetic Vector Potential $A = -\rho/4$ a_z wb/m, Calculate the total	[L3][CO1&2]	[5M]
		magnetic flux crossing the $\Phi=\pi/2, 1 \le \rho \le 2m, 0 \le z \le 5m.$		
6	a	Explain about magnetic scalar and vector potential for Magneto-statics.	[L2][CO1&2]	[5M]
	b	An infinitely filamentary wire carries a current of 2A in the +z direction.	[L3][CO1&2]	[5M]
7	_	Calculate B at (-3,4,7).	[I_5][CO1 9-2]	[CM]
'	a	Determine the Magnetic Field Density due to Infinite line Current by applying Ampere's Circuit law.	[L5][CO1&2]	[6M]
	b	List differential and integral form of Maxwell's equation for static EM filed.	[L1][CO2&3]	[4M]
8	a	Find the Magnetic field Intensity Due to a Straight current carrying	[L1][CO1&2]	[5M]
	•	filamentary conductor of finite length.	[21][001002]	[61/2]
	b	Find H at (-3,4,0) due to the Current Filament Shown in the Figure.	[L1][CO1,2&3]	[5M]
		Z		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		X		
9		Find H for a straight current carrying conductor using Biot Savart's law and	[L1][CO1&2]	[10M]
		Ampere's Circuit law.		
10		plain any two applications of Ampere's Circuit law.	[L2][CO1,2&3]	[10M]
11	a	A Current Distribution gives rise to the vector potential $A = X^2Ya_x + Y^2Xa_y + XYZa_z$ web/m. Calculate B.	[L3] [CO1&2]	[5M]
	b	Explain about Non-Existence of Magnetic Mono pole.	[L2] [CO2]	[5M]

UNIT –III MAXWELL'S EQUATIONS (TIME VARYING FIELDS)

1	a	Define Faraday's law.	[L1][CO2&3]	[2M]
	b	Define In consistency of Ampere's law.	[L1][CO2&3]	[2M]
	c	Define Motional EMF.	[L1][CO2&3]	[2M]
	d	Define Transformer EMF.	[L1][CO2&3]	[2M]
	e	Define Displacement current.	[L1][CO2&3]	[2M]
2	a	Explain Faraday's laws in Electromagnetic induction.	[L2][CO1&2]	[6M]
	b	Prove that the Displacement Current Density $J_D = \frac{\partial D}{\partial t}$.	[L5][CO1,2&3]	[4M]
3	a	Determine the Transformer EMF for the time varying fields.	[L5][CO1,2&3]	[7M]
	b	Define Faraday's law?	[L1][CO1,2&3]	[3M]
4	a	Explain Faraday's law of electromagnetic induction and derive the Expression for Induced EMF.	[L2][CO1,2&3]	[5M]
	b	Explain the motional EMF and derive the expression for the maxwell equation.	[L2][CO1,2&3]	[5M]
5	a	Determine the Expressions for inconsistency of Ampere's law.	[L5][CO1,2&3]	[8M]
	b	Why ampere's Law is In-consistent.	[L1][CO2&3]	[2M]
6	a	Discuss Maxwell's equation in both differential and integral in final form	[L6][CO1,2&3]	[6M]
	b	An antenna radiates in free space and H= 50 $\cos(1000t\text{-}5y)$ A/m. Calculate ω and β .	[L3][CO2&3]	[4M]
7	a	In free space, $E=20 \cos(\omega t-50x)$ ay V/m. Calculate Jd, H .	[L3][CO2&3]	[6M]
	b	Translate the Maxwell's equations into word statement.	[L2][CO1,2&3]	[4M]
8	a	Prove that one of the Maxwell's equation is $\nabla \times E = -dB/dt$	[L5][CO1,2&3]	[6M]
	b	In free space, $H=10 \sin(\omega t-100x)$ ay A/m. Calculate Jd, E.	[L3][CO2&3]	[4M]
9	a	Prove that one of the Maxwell's equation is $\nabla \times H = J_d + J$.	[L5][CO1,2&3]	[7M]
	b	An antenna radiates in free space and E= 80 cos(500t-8z) ax V/m. Calculate	[L3][CO2&3]	[3M]
10	D	o and β.	[I 2][CO2 8-2]	[10]/[]
10	EX	and determine the EMF for the Followings.i) Motional EMF. (ii)Transformer EMF.	[L2][CO2&3]	[10M]
11	Ex	aplain the following i) Faraday's law ii) Inconsistency of Ampere's law	[L2] [CO2&3]	[10M]

QP Code: 18EC0412

UNIT –IV EM WAVE PROPAGATION

	ı		FT 43FG000 43	503.53
1	a	Define Poynting theorem.	[L1][CO3&4]	[2M]
	b	Define Polarization.	[L1][CO3&4]	[2M]
	С	Define Poynting vector.	[L1][CO3&4]	[2M]
	d	Define Propagation constant.	[L1][CO3&4]	[2M]
	e	List wave equation for E and H in free space?	[L1][CO3&4]	[2M]
2		Discuss about pointing theorem and Poynting vector.	[L6][CO4&5]	[10M]
3	a	Explain and derive the characteristics of wave propagation in free space.	[L2][CO3,4&5]	[6M]
	b	Given that E= $40\cos(10^8t - 3x) a_y v/m$, Determine the direction of wave	[L3][CO4&5]	[4M]
		propagation, velocity of the wave, wave length.		
4		Electric field in free space is given by E=50 cos(10 ⁸ t + βx) $a_y v/m$	[L3][CO4&5]	[10M]
		a). Find the direction of wave propagation.		
		b). Calculate β and the time it takes to travel a distance of λ .		
		c). Sketch the wave at $t=0,T/4$ and $T/2$.		
5	a	Determine the expression for intrinsic impendence and propagation constant	[L5][CO4&5]	[6M]
		in a good conductor.		
	b	In a Nonmagnetic medium E= $4\sin(2\pi X 10^7 t - 0.8x) a_z v/m$, find ε_r , η .	[L3][CO4&5]	[4M]
6	a	Evaluate the wave characteristics of a uniform plane wave in free space.	[L5][CO4&5]	[6M]
	b	In free space (z ≤ 0), a plane wave with H = 10 cos ($\mathbf{10^8}$ t - β z) \hat{a}_x mA/m is	[L3] [CO4&5]	[4M]
		incident normally on a lossless medium ($\varepsilon=2\varepsilon_0, \mu=8\mu_0$) in region $z>0$.		
		Determine the reflected wave and the transmitted wave.		
7	a	Evaluate the wave equation in lossy dielectric medium for sinusoidal time	[L5][CO3,4&5]	[5M]
	1.	variations.	[] 2][CO4 8-5]	[[[N / []
	b	In lossless medium $\eta = 40\pi$, $\mu_r = 1$, H=2 cos ($\omega t - z$) $\hat{a}_x + 5\sin(\omega t - z)$ \hat{a}_y . Find ε_r , ω , E for the medium.	[L3][CO4&5]	[5M]
8	a	Evaluate the expressions for attenuation constant and phase shift constant of	[L5][CO4&5]	[5M]
		lossy dielectric medium.		
	b	A plane wave propagating through medium with $\varepsilon_r = 8$, $\mu_r = 2$ has the	[L3][CO4&5]	[5M]
		electric field intensity E = $0.5 e^{-jz^3} \sin (10^8 t - \beta z) \hat{a}_x \text{ V/m}$. Determine wave		
		velocity, wave impedance and magnetic field intensity.		
9		Evaluate the expressions for reflection coefficient and transmission	[L5][CO4&5]	[10M]
		coefficient by a normal incident wave for a dielectric medium.		
10		aplain the followings with an expression.	[L2][CO4&5]	[10M]
		Linear polarization ii) Circular polarization iii) Elliptical polarization		
11	In	a medium, E = $14e^{-0.05x}$ sin (2 X 10^8 t - 2x) \hat{a}_z V/m Determine the	[L3] [CO4&5]	[10M]
		followings:		
		i) The propagation constant		
		ii) The wavelength		
		iii) The speed of the wave		
		iv) Sketch the wave at $t=0,T/4 \& T/2$		

R18 QP Code: 18EC0412

UNIT -V TRANSMISSION LINES

1	<u> </u>	What are the secondary constants of a line?	[L1][CO6]	[2M]
1	a	·		
	b	What is characteristic impedance?	[L1][CO6]	[2M]
	c	Define transmission line.	[L1][CO6]	[2M]
	d	What is the relationship between characteristic impedance and propagation constant?	[L1][CO6]	[2M]
	e	What are the primary constants of a transmissionline?	[L1][CO6]	[2M]
2	a	Evaluate the equation for voltage and current at any point in a transmission line.	[L5][CO6]	[6M]
	b	Discuss about Transmission line Parameters.	[L6][CO6]	[4M]
3	a	Evaluate the equation for Characteristic Impedance of a Transmission line.	[L5][CO6]	[5M]
	b	A telephone line has the following parameters: $R = 30 \Omega/km$, $G = 0 L = 100 mH/km$, $C = 20 \mu F/m$. At 1kHz, calculate the characteristic impedance, propagation constant and velocity of the signal.	[L3][CO6]	[5M]
4	a	Explain about Microstrip Transmission Line.	[L2][CO6]	[5M]
	b	A distortion less line has Z_0 =60 Ω Attenuation constant = 20 mNp/m and u=0.6c (c is velocity of light) Find the primary parameters of the transmission line(R L C G and λ) at 100MHz.	[L3][CO6]	[5M]
5	a	Evaluate the equation for Input Impedance of the transmission line.	[L5][CO6]	[5M]
	b	A Certain transmission line 2m long operating at $\omega = 10^6$ rad/s has $\alpha = 8$ bd/m,	[L3][CO6]	[5M]
		β =1 rad/m, and Z_0 =60+j40Ω. If the line is connected to a source of 10angle(0°) V, Z_g = 40Ω and terminated by a load of 20+j50Ω, determine the input impedance.		
6	a	Relate SWR and reflection coefficient.	[L2][CO6]	[5M]
	b	Explain the applications of transmission lines.	[L2] [CO6]	[5M]
7	a	Discuss about Transients on Transmission Lines.	[L6][CO6]	[5M]
	b	A low loss transmission line of 100Ω characteristics impedance is connected to a load of 200Ω . Calculate the voltage reflection coefficient and the standing wave ratio.	[L3][CO6]	[5M]
8		A 50Ω lossless transmission line is terminated on a load impedance of ZL =(25 + j 50)Ω. Use the smith chart to find. i) Voltage reflection coefficient. ii) VSWR. iii) input impedance of the line, given that the line is 3.3λ long.	[L3][CO6]	[10M]
9	a	Explain about the smith chart for finding the SWR and Reflection coefficient.	[L2][CO6]	[7M]
	b	List out the applications of smith chart?	[L1][CO6]	[3M]
10	ter	30 m long lossless transmission line with $Z_0 = 50\Omega$ operating at 2 MHz is minated with a load $Z_L = 60 + j 40\Omega$. If $u = 0.6$ C on the line, find the election coefficient, the standing wave ratio S and the input impedance.	[L3][CO6]	[10M]
11	A	lossless transmission line with Z_0 =50 Ω is 30m long and operates at 3MHz. The line is terminated with a load ZL= 70 +j 50Ω , If u=0.6c on the line. Compute reflection coefficient, standing wave ratio and Input impedance, load impedance, SWR and complex reflection coefficient (i) without using smith chart (ii) Using smith chart	[L3][CO6]	[10M]

Prepared by: 1. Dr. BASAVARAJ GK

Professor/ECE

2. Mr. K.BHASKAR

Assistant Professor/ECE